April 04, 2012
Rifle Recoil - Understanding the Physics
Rifle Recoil - Why the Pain?!
Welcome to Rifle Recoil 101. Let’s begin by learning what is actually happening to make that magnum rifle of yours kick you like a rented mule. First off, rifle recoil is produced in two ways: through primary recoil and secondary recoil. We will tackle primary recoil first, which is caused by the weight of the bullet as it accelerates down the barrel. To explain what's going on after your firing pin strikes the primer, you're going to have to buckle up, as we're taking a trip back to your high school physics classroom. Before we start, I'll show you a quick video of a friend of mine shooting what he refers to as being the hardest recoiling rifle he has ever fired. No, we haven't had a chance to dive into the heavy double rifle and the like being toted around the dark continent, but this .338 RUM weighing in at 6.5 pounds wearing just iron sights produced enough rifle recoil for him to turn down the offer of a crisp $100 bill if he would've shot it prone. What are friends for, right?! [video width="576" height="320" mp4="https://www.thealaskalife.com/wp-content/uploads/2012/04/Heavy-Rifle-Recoil-338-RUM.mp4"][/video] The physics principles at play here are very simple and ones that we are likely very familiar with. We are going to explain this in a step-by-step format which will certainly minimize the size of your headache after reading this (hopefully). Most of us have been exposed to Sir Isaac Newtons Laws of Motion at some point during our schooling and we are going to look at each one as all are relevant to this topic. Newtons First Law states that an object at rest will remain at rest unless acted upon by an outside force. Also, an object in motion continues in motion with the same speed and in the same direction unless acted upon by an outside force. This law is often called "the law of inertia". More simply, this means that the gun is not going to move by itself or counter recoil by itself. The gun will not move or exert force (on your poor shoulder) until a force is exerted upon it. This is easy to envision, and also applies to pistols as well. You can see the recoil being exerted on the pistol in the video below and the slide reciprocating as the force is applied to it. Well, that was easy, let’s keep going! [video width="640" height="360" mp4="https://www.thealaskalife.com/wp-content/uploads/2012/04/Rifle-Recoil-Pistol-Example.mp4"][/video] Newtons Second Law states that acceleration is produced when a force acts on a mass. The greater the mass (of the object being accelerated), the greater the amount of force needed to accelerate the object (bullet in our case). Everyone inherently knows that heavier objects require more force to move the same distance as lighter objects. The acceleration of our bullets is directly proportional to the amount of force (burning powder) being applied to them and inversely proportional to the mass of the bullet. This means that how fast your gun and bullet accelerate are going to depend directly on the amount of force applied to it, and the weight of the gun or bullet. We now see a clear relationship between force, mass, and acceleration. It is familiarly expressed as Force = Mass x Acceleration, or F=ma. Taking that equation, you can now calculate how much force is generated from an object with a known weight accelerating at a known rate. Known rate, known weight, you got your force! "What is acceleration?" you ask? Acceleration (a) is basically the change in velocity (v) over a given time (t). Our F=ma equation will give you the amount of force being applied during the acceleration of our bullet. After our bullet has stopped accelerating, you can calculate the amount of kinetic energy imparted to it through its acceleration by using the equation KE=mv^2. You can do this because the "a" in our F=ma equation has gone to zero after the bullet has stopped accelerating! The kinetic energy (KE) is going to determine how powerful your bullet is while the F=ma equation will determine how much recoil it is going to generate getting up to its maximum speed through its acceleration process. Keep this in the back of your head as we will discuss it in the next section.![rifle recoil ruger omega](https://cdn.shopify.com/s/files/1/0532/7385/4110/t/2/assets/Rifle-Recoil-Suppressor-Ruger-American-Omega-1024x1024.jpg?v=1618027885)
![rifle recoil ar-15](https://cdn.shopify.com/s/files/1/0532/7385/4110/t/2/assets/Rifle-Recoil-AR-15-1024x683.jpg?v=1618027886)
For continued information on the topic, visit the Muzzle Brake article!
3 comments
The best way to eliminate felt recoil is to let your wife shoot the darn moose… LOL….
Brian
April 17, 2021
HAHA! Love your comment. I assume the CGC is the centers for gun control? :) Hiram Maxim, who is the inventor of the device, called it a silencer…as does the ATF, so that’s good enough for me!
Kyle
April 17, 2021
I am quite triggered about this article. I notice you called a suppressor a silencer. For your information, it is not called a silencer because it is quite impossible to completely silence a weapon but you can suppress it. If you do not correct the article, I am going to report you to the CGC.
Barry Bomschizzle
April 17, 2021